(158-4x)+(x^2-32)=180

Simple and best practice solution for (158-4x)+(x^2-32)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (158-4x)+(x^2-32)=180 equation:



(158-4x)+(x^2-32)=180
We move all terms to the left:
(158-4x)+(x^2-32)-(180)=0
We add all the numbers together, and all the variables
(-4x+158)+(x^2-32)-180=0
We get rid of parentheses
x^2-4x+158-32-180=0
We add all the numbers together, and all the variables
x^2-4x-54=0
a = 1; b = -4; c = -54;
Δ = b2-4ac
Δ = -42-4·1·(-54)
Δ = 232
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{232}=\sqrt{4*58}=\sqrt{4}*\sqrt{58}=2\sqrt{58}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{58}}{2*1}=\frac{4-2\sqrt{58}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{58}}{2*1}=\frac{4+2\sqrt{58}}{2} $

See similar equations:

| 9+8=-17(x-2)+11=28x | | w+4/3+1/3=-1/6(w-7/2) | | (158-4x)+(x^2+32)=180 | | 102-8f=38 | | (9x-3)(5x+3)=0 | | 420=2n-1 | | 75+18z=453 | | x^2-4x+158+32-180=0 | | 1/3(t-6)-10=-3t+2 | | 2=k10 | | 3-k/1-5=2 | | X²+x-15=0 | | -3(2-a)=9 | | 17b-(-93)=926 | | 261-3n=732 | | 9000=10800/1+x | | -(2n+5)=9 | | -11w-4=7 | | 9000=10800/(1+x) | | v-7=-2 | | 13+x=103 | | -20=-5(3-b) | | (x-1)^(2/3)=9 | | 3v=-15/4 | | 1/4y+7=1/7y | | 6/5x-3/2=7/10{x-3/4} | | 2x+13=x^2+25 | | -3u-3=6 | | -48+-5t=342 | | 3x+28=x^2+64 | | 5x-3/20=2x+1/5 | | 2.5+17+21x-25=180 |

Equations solver categories